Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Plants in grasslands navigate a complex landscape of interactions including competition for resources and defense against pathogens. Foliar fungi can suppress plant growth directly through pathogenic interactions, or indirectly via host growth-defense tradeoffs. The exclusion of foliar fungi allows the reallocation of resources from defense to growth and reproduction. In addition, plants also invest photosynthates in rhizodeposition, or root exudates, which play a significant role in shaping the rhizosphere microbial community. However, it remains unclear what impact the exclusion of foliar fungi has on the allocation of resources to rhizodeposition and the composition of the rhizosphere microbial community. Using a 6-year foliar fungicide study in plots planted with 16 species of native prairie plants, we asked whether foliar fungi influence the rhizosphere microbial composition of a common prairie grass (Andropogon gerardii) and a common legume (Lespedeza capatita). We found that foliar fungicide increased aboveground biomass and season-long plant production, but did not alter root biomass, seed production, or rhizosphere microbial diversity. The magnitude of change in aboveground season-long plant production was significantly associated with the magnitude of change in the rhizosphere microbial community in paired foliar fungicide-treatedvs. control plots. These results suggest important coupling between foliar fungal infection and plant investment in rhizodeposition to modify the local soil microbial community.more » « lessFree, publicly-accessible full text available March 5, 2026
-
Soil nutrients cause threefold increase in pathogen and herbivore impacts on grassland plant biomassAbstract A combination of theory and experiments predicts that increasing soil nutrients will modify herbivore and microbial impacts on ecosystem carbon cycling.However, few studies of herbivores and soil nutrients have measured both ecosystem carbon fluxes and carbon pools. Even more rare are studies manipulating microbes and nutrients that look at ecosystem carbon cycling responses.We added nutrients to a long‐term, experiment manipulating foliar fungi, soil fungi, mammalian herbivores and arthropods in a low fertility grassland. We measured gross primary production (GPP), ecosystem respiration (ER), net ecosystem exchange (NEE) and plant biomass throughout the growing season to determine how nutrients modify consumer impacts on ecosystem carbon cycling.Nutrient addition increased above‐ground biomass and GPP, but not ER, resulting in an increase in ecosystem carbon uptake rate. Reducing foliar fungi and arthropods increased plant biomass. Nutrients amplified consumer effects on plant biomass, such that arthropods and foliar fungi had a threefold larger impact on above‐ground biomass in fertilized plots.Synthesis. Our work demonstrates that throughout the growing season soil resources modify carbon uptake rates as well as animal and fungal impacts on plant biomass production. Taken together, ongoing nutrient pollution may increase ecosystem carbon uptake and drive fungi and herbivores to have larger impacts on plant biomass production.more » « less
-
Abstract Plants face trade‐offs between allocating resources to growth, while also defending against herbivores or pathogens. Species differences along defense trade‐off axes may promote coexistence and maintain diversity. However, few studies of plant communities have simultaneously compared defense trade‐offs against an array of herbivores and pathogens for which defense investment may differ, and even fewer have been conducted in the complex natural communities in which these interactions unfold. We tested predictions about the role of defense trade‐offs with competition and growth in diversity maintenance by tracking plant species abundance in a field experiment that removed individual consumer groups (mammals, arthropods, fungi) and added nutrients. Consistent with a growth–defense trade‐off, plant species that increased in mass in response to nutrient addition also increased when consumers were removed. This growth–defense trade‐off occurred for all consumer groups studied. Nutrient addition reduced plant species richness, which is consistent with trade‐off theory. Removing foliar fungi increased plant diversity via increased species evenness, whereas removal of other consumer groups had little effect on diversity, counter to expectations. Thus, while growth–defense trade‐offs are general across consumer groups, this trade‐off observed in wild plant communities does not necessarily support plant diversity maintenance.more » « less
An official website of the United States government
